INTRODUCCIÓN A LA COMPUTACIÓN

Objetivo general

El alumno diseñará y construirá algoritmos para resolver problemas elementales de las ciencias básicas e ingenierías, basado en la descripción funcional de los elementos básicos del modelo de Von Neumann y de un equipo de cómputo, así como de los programas de desarrollo, operación y aplicación más importantes para tal equipo. Asimismo, conocerá los derechos de autor de los desarrolladores de programas y distinguirá los tipos de licenciamiento más importantes que usan cuando distribuyen sus programas

Unidad 1

ELEMENTOS FUNDAMENTALES

AL TERMINO DEL MÓDULO, EL ALUMNO COMPRENDERÁ LOS CONCEPTOS PRINCIPALES, EL MODELO DE VON NEUMANN Y LA REPRESENTACIÓN DE DATOS

Objetivo de aprendizaje

DEFINIRÁ CORRECTAMENTE LOS CONCEPTOS DE COMPUTADORA, PROCESADOR DE DATOS, PROGRAMA, LENGUAJE DE COMPUTADORA Y DATOS EN SU CUADERNO.

Contenido

- 1.1 CONCEPTOS BÁSICOS
- 1.1.1 COMPUTADORA
- 1.1.2 PROCESADOR DE DATOS
- 1.1.3 PROGRAMA
- 1.1.4 LENGUAJE DE COMPUTADORA
- 1.1.5 DATOS
- 1.2 EL MODELO DE VON NEUMANN
- 1.2.1 MEMORIA
- 1.2.2 UNIDAD ARITMÉTICO-LÓGICA
- 1.2.3 UNIDAD DE CONTROL
- 1.2.4 SUBSISTEMA DE ENTRADA Y SALIDA
- 1.2.5 PROGRAMA ALMACENADO
- 1.2.6 EJECUCIÓN SECUENCIAL DE UNA INSTRUCCIÓN
- 1.3 REPRESENTACIÓN DE DATOS
- 1.3.1 TIPOS DE DATOS
- 1.3.2 REPRESENTACIÓN INTERNA (BITS Y BYTES)
- 1.3.3 NOTACIÓN BINARIA Y HEXADECIMAL
- 1.3.4 CÓDIGOS

- 1.3.5 REPRESENTACIÓN DE TEXTOS
- 1.3.6 REPRESENTACIÓN DE IMÁGENES
- 1.3.7 REPRESENTACIÓN DE SONIDOS

Unidad 2

DESCRIPCIÓN FUNCIONAL DE UN EQUIPO DE CÓMPUTO

AL TERMINO DEL MODULO, EL ALUMNO DESCRIBIRÁ DE MANERA FUNCIONAL LOS DISPOSITIVOS QUE INTEGRAN UN EQUIPO DE COMPUTO

Objetivo de aprendizaje

LAS FUNCIONES PRINCIPALES DE LA UNIDAD CENTRAL DE PROCESAMIENTO, LA UNIDAD DE CONTROL Y LAS ANOTARA EN SU CUADERNO

Contenido

- 2.1 EL PROCESADOR CENTRAL
- 2.1.1 UNIDAD CENTRAL DE PROCESAMIENTO
- 2.1.2 UNIDAD DE CONTROL
- 2.2 MEMORIAS
- 2.2.1 LA MEMORIA PRINCIPAL
- 2.2.2 TIPOS DE MEMORIAS
- 2.3 DISPOSITIVOS DE ENTRADA Y SALIDA
- 2.3.1 PERIFÉRICOS DE ENTRADA
- 2.3.2 PERIFÉRICOS DE SALIDA
- 2.4 DISPOSITIVOS DE ALMACENAMIENTO
- 2.4.1 MAGNÉTICOS
- 2.4.2 ÓPTICOS
- 2.4.3 MEMORIAS FLASH

Unidad 3

LOS PROGRAMAS DE SISTEMAS

AL TERMINO DEL MÓDULO, EL ALUMNO DIFERENCIARA LOS PROGRAMAS DE SISTEMA Y SU FUNCIÓN

Objetivo de aprendizaje

RESUMIRÁ LOS CONCEPTOS DE LENGUAJE MÁQUINA, LENGUAJE SIMBÓLICO, PROGRAMA OBJETO, MAPA DE MEMORIA Y LOS MODOS DE

DIRECCIONAMIENTO DE LA MEMORIA, ASÍ COMO EL CICLO DE EJECUCIÓN DE UNA INSTRUCCIÓN.

Contenido

- 3.1 PROGRAMACIÓN DE BAJO NIVEL
- 3.1.1 DESCRIPCIÓN FUNCIONAL DE LA MEMORIA
- 3.1.2 LENGUAJES: DE MÁQUINA Y SIMBÓLICO
- 3.1.3 PROGRAMA FUENTE
- 3.1.4 PROGRAMA OBJETO
- 3.1.5 MAPA DE MEMORIA
- 3.1.6 CICLO DE EJECUCIÓN DE LA UNIDAD CENTRAL DE PROCESAMIENTO
- 3.1.7 TIPOS DE DIRECCIONAMIENTO DE MEMORIA Y SUS CARACTERÍSTICAS
- 3.2 PROGRAMAS DE SISTEMAS
- 3.2.1 ENSAMBLADORES
- 3.2.2 MACROPROCESADORES
- 3.2.3 CARGADORES
- 3.2.4 COMPILADORES E INTÉRPRETES
- 3.2.5 SISTEMA OPERATIVO

Unidad 4

ALGORITMOS, DIAGRAMAS DE FLUJO Y PROGRAMAS

AL TERMINO DEL MODULO, EL ALUMNO SERÁ CAPAZ DE IDENTIFICAR LAS TÉCNICAS DE SOLUCIÓN DE PROBLEMAS, ASÍ COMO LAS FASES QUE COMPONEN LA CREACIÓN DE UN PROGRAMA

Objetivo de aprendizaje

EXPLICARÁ DE FORMA ESCRITA LAS DIFERENCIAS Y RELACIONES ENTRE ALGORITMO, DIAGRAMA DE FLUJO Y PROGRAMA

Contenido

- 4.1 CONCEPTOS BÁSICOS DE PROGRAMACIÓN
- 4.1.1 DEFINICIÓN DE ALGORITMO
- 4.1.2 DIAGRAMAS DE FLUJO
- 4.1.3 DEFINICIÓN DE PROGRAMA
- 4.2 FASES DE CREACIÓN DE UN PROGRAMA
- 4.2.1 DEFINICIÓN DEL PROBLEMA
- 4.2.2 ANÁLISIS DEL PROBLEMA
- 4.2.3 DISEÑO DEL ALGORITMO
- 4.2.4 CODIFICACIÓN
- 4.2.5 PRUEBA Y DEPURACIÓN

Unidad 5

ELEMENTOS Y OPERACIONES BÁSICAS QUE CONFORMAN UN ALGORITMO

AL TERMINO DEL MÓDULO EL ALUMNO SERÁ CAPAZ DE REALIZAR UN ALGORITMO DE UN PROBLEMA EN PSEUDOCÓDIGO

Objetivo de aprendizaje

EXPLICARÁ DETALLADAMENTE EN SU CUADERNO LAS DIFERENCIAS ENTRE LOS DATOS ENTEROS, REALES Y DE CARACTERES, CON EL APOYO DE EJEMPLOS

Contenido

- **5.1 TIPOS DE DATOS**
- **5.1.1 ENTEROS**
- **5.1.2 REALES**
- 5.1.3 CARACTERES
- 5.2 PSEUDOCÓDIGO (LÉXICO, ELEMENTOS LEXICOGRÁFICOS)
- 5.2.1 IDENTIFICADORES Y PALABRAS RESERVADAS
- **5.2.2 CONSTANTES**
- 5.2.3 VARIABLES
- 5.2.4 COMENTARIOS
- 5.3 EXPRESIONES
- 5.3.1 OPERADORES ARITMÉTICOS
- 5.3.2 OPERADORES RELACIONALES
- 5.3.3 OPERADORES LÓGICOS
- 5.3.4 OPERADORES DE ASIGNACIÓN
- 5.3.5 PRIORIDAD DE LOS OPERADORES

Unidad 6

PROGRAMACIÓN ESTRUCTURADA

La programación estructurada es una forma de escribir programas de ordenador (programación de computadora) de forma clara. Para ello utiliza únicamente tres estructuras: secuencia, selección e iteración; siendo innecesario el uso de la instrucción o instrucciones de transferencia incondicional

Objetivo de aprendizaje

El alumno conocera los conceptos basicos de programacion estructurada

Contenido

- 6.1 PROGRAMACIÓN ESTRUCTURADA
- 6.1.1 DEFINICIÓN
- 6.1.2 DISEÑO DESCENDENTE
- 6.2 REPRESENTACIÓN DE ALGORITMOS
- 6.2.1 ALGORITMO
- 6.2.2 DIAGRAMA DE FLUJO
- 6.2.3 PSEUDOCÓDIGO
- 6.3 ESTRUCTURA DE CONTROL SECUENCIAL
- 6.3.1 ASIGNACIÓN
- 6.3.2 ENTRADA
- 6.3.3 SALIDA

Unidad 7

DERECHOS DE AUTOR Y SOFTWARE LIBRE

DISTINGUIRÁ LOS DERECHOS DE AUTOR Y LAS LICENCIAS COMO FORMAS DE PROTECCIÓN DEL SOFTWARE, Y EL SOFTWARE LIBRE COMO SOCIALMENTE VENTAJOSO

Objetivo de aprendizaje

DESCRIBIRÁ DETALLADAMENTE EN SU CUADERNO, LOS DERECHOS DE AUTOR Y LAS LICENCIAS COMO FORMAS DE PROTECCIÓN DEL SOFTWARE

Contenido

- 7.1 DERECHOS DE AUTOR Y LICENCIAMIENTO
- 7.1.1 DERECHOS DE AUTOR
- 7.1.2 LICENCIAS DE SOFTWARE
- 7.2 SOFTWARE LIBRE
- 7.2.1 FUNDAMENTOS
- 7.2.2 VENTAJAS
- 7.2.3 APLICACIONES POPULARES