

PREINTERNA HOSPITAL MATERNO INFANTIL ESPERANZA LOPEZ MATEOS

DR. HUGO FRANCISCO VILLALOBOS ANZALDO

ALUMNA: MAHELET SARAI ANGULO MARTINEZ

LME2982

MEDICINA BASADA EN EVIDENCIAS

8TH SEMESTRE

TIPO DE ESTUDIO	TIPO DE ESTUDIO AL QUE PERTENECE	FÓRMULAS	SESGOS COMUNES	NIVEL DE EVIDENCIA
Ensayo clínico	Experimental puede ser transversal o longitudinal	El riesgo relativo $RR = \frac{a/(a+b)}{c/(c+d)}$ Riesgo Absoluto: Población total sería = (a+c)/N Población de expuestos es = a/(a+b)	Sesgos de selección De Neyman de prevalencia o incidencia. De berkman de admisión. Sesgo de no respuesta o efecto del voluntario.	1B 2B
		Población de no expuestos es = c/(c+d) $ \text{Riesgo atribuible} \\ \mathbf{RA\%} = \left(\frac{I_e - I_{ne}}{I_e}\right) x 100 $ $ \text{Odds ratio o razón de momios} \\ \text{OR} = \frac{\mathbf{a} \times \mathbf{d}}{\mathbf{b} \times \mathbf{c}} $	Sesgo de membresía o de pertenencia. Sesgo de procedimiento de selección Sesgos de medición Sesgo de procedimientos. Sesgo de memoria. Sesgo por falta de sensibilidad de un instrumento. Sesgo de detección. Sesgo de adaptación.	
Metaanálisis	Observacional Analítico, transversal o longitudinal	Método ponderado por la inversa de la varianza	Sesgo de publicación Sesgo impulsado por agenda	1 A 2 A 3 A

Tamizaje	Observacional transversal o	Aplicación de una prueba de laboratorio, examen clínico u otro procedimiento a	De incidencia- prevalencia	2B
		$Q = \sum w_i (T_i - \bar{T})^2$		
		Homogeneidad		
		$\operatorname{var}(\bar{T}) = \frac{1}{\sum w_i}$		
		1		
		$\bar{T} = \frac{\sum_{w_i} T_i}{\sum_{w_i}}$		
		Estimación del efecto global y su varianza		
		$\frac{1}{w_i} + \tau^2$		
		$w_i^* = \frac{1}{\frac{1}{1 + \tau^2}}$		
		U Peso ajustado para cada estudio		
		$\tau^2 = \frac{Q - (k - 1)}{\tau \tau}$		
		$U = (k-1) \left(\bar{w} - \frac{s_w^2}{k \bar{w}} \right)$		
		$\bar{w} = \frac{\sum w_i}{k}$ $s_w^2 = \frac{1}{k-1} (\sum w_i^2 - k\bar{w}^2)$		
		$\bar{w} = \frac{\sum_{i} w_i}{v_i}$		
		Varianza por variación de estudios		
		$\bar{T} = \frac{\sum w_i T_i}{\sum w_i}$		

longitudinal.	escala masiva.	De selección Anticipación en el	
		diagnostico	
		De sensibilidad y especificidad.	